Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа с. Бычиха Хабаровского муниципального района Хабаровского края

Рассмотрено Протокол Педагогического совета № I от «30» 0 ℓ 2019 г.

Утверждаю приказом директора МБОУ СОШ с. Былыка песого муниция приказом директора приказом директор

РАБОЧАЯ ПРОГРАММА ПО ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ «ИНФОРМАТИКА В ИГРАХ И ЗАДАЧАХ»

3 а класса(уровень начального общего образования) УМК А.В. Горячева Срок реализации программы 2019/2020

> Программу составила: учитель начальных классов Десятова Л.В.

1. Пояснительная записка

Рабочая программа по курсу «Информатика в играх и задачах» составлена в соответствии с требованиями Федерального государственного образовательного стандарта начального общего образования, утвержденного приказом Министерства образования и науки РФ № 373 от 06.10.2009, на основе авторской программы А.В. Горячева «Информатика в играх и задачах» Образовательная система «Школа 2100» (Примерная основная образовательная программа. В 2-х книгах. Книга 1. Книга 2. Начальная школа. / Под науч. ред. Д.И. Фельдштейна. -М.: Баласс, 2011).

Главная цель курса — дать ученикам инвариантные фундаментальные знания в областях, связанных с информатикой, которые вследствие непрерывного обновления и изменения в аппаратных средствах выходят на первое место в формировании научного информационно-технологического потенциала общества.

Цели изучения курса в начальной школе:

- 1) Развитие у школьников устойчивых навыков решения задач с применением таких подходов к решению, которые наиболее типичны и распространены в областях деятельности, связанных с использованием системно-информационного языка:
- применение формальной логики при решении задач построение выводов путем применения к известным утверждениям логических операций "если ... то", "и", "или", "не" и их комбинаций ("если ... и ..., то...");
- алгоритмический подход к решению задач умение планирования последовательности действий для достижения какой-либо цели, а также решения широкого класса задач, для которых ответом является не число или утверждение, а описание последовательности действий;
- системный подход рассмотрение сложных объектов и явлений в виде набора более простых составных частей, каждая из которых выполняет свою роль для функционирования объекта в целом; рассмотрение влияния изменения в одной составной части на поведение всей системы;
- объектно-ориентированный подход постановка во главу угла объектов, а не действий, умение объединять отдельные предметы в группу с общим названием, выделять общие признаки предметов этой группы и действия, выполняемые над этими предметами; умение описывать предмет по принципу "из чего состоит и что делает (можно с ним делать)".
- 2) Расширение кругозора в областях знаний, тесно связанных с информатикой: знакомство с графами, комбинаторными задачами, логическими играми с выигрышной стратегией ("начинают и выигрывают") и некоторыми другими. Несмотря на ознакомительный подход к данным понятиям и методам, по отношению к каждому из них предполагается обучение решению простейших типовых задач, включаемых в контрольный материал, т.е. акцент ставится на умении приложения даже самых скромных знаний.
- 3) Создание у учеников навыков решения логических задач и ознакомление с общими приемами решения задач "как решать задачу, которую раньше не решали" (поиск закономерностей, рассуждения по аналогии, по индукции, правдоподобные догадки, развитие творческого воображения и др.).

Основная задача курса — развить умение проведения анализа действительности для построения информационной модели и ее изображения с помощью какого-либо системно-информационного языка.

Говоря об общеобразовательных целях курса информатики, мы полагаем, что умение любого человека выделить в своей предметной области систему понятий, представить их в виде совокупности атрибутов и действий, описать алгоритмы действий и схемы логического вывода поможет не только эффективному внедрению автоматизации в его деятельность, но и послужит самому человеку для повышения ясности мышления в своей предметной области.

2. Общая характеристика учебного курса в учебном плане

К основным результатам изучения информатики и ИКТ в средней общеобразовательной школе относятся:

- освоение учащимися системы базовых знаний, отражающих вклад информатики в формирование современной научной картины мира, роль информационных процессов в обществе, биологических и технических системах;
- овладение умениями применять, анализировать, преобразовывать информационные модели реальных объектов и процессов, используя при этом информационные и коммуникационные технологии (ИКТ), в том числе при изучении других школьных дисциплин;
- развитие познавательных интересов, интеллектуальных и творческих способностей путём освоения и использования методов информатики и средств ИКТ при изучении различных учебных предметов;
- воспитание ответственного отношения к соблюдению этических и правовых норм информационной деятельности;
- приобретение опыта использования информационных технологий в индивидуальной и коллективной учебной и познавательной, в том числе проектной, деятельности.

Особое значение пропедевтического изучения информатики в начальной школе связано с наличием в содержании информатики логически сложных разделов, требующих для успешного освоения развитого логического и алгоритмического мышления. С другой стороны, использование информационных и коммуникационных технологий в начальном образовании является важным элементом формирования универсальных учебных действий обучающихся на ступени начального общего образования, обеспечивающим его результативность.

Учитывая эти обстоятельства изучения подготовительного курса информатики, мы полагаем, что в курсе информатики и ИКТ для начальной школы наиболее целесообразно сконцентрировать основное внимание на развитии логического и алгоритмического мышления школьников и на освоении ими практики работы на компьютере.

Рассматривая два направления пропедевтического изучения информатики – развитие логического и алгоритмического, с одной стороны, и освоение практики работы на компьютере, с другой, можно заметить их расхождение по нескольким характеристикам, связанным с организацией учебного процесса.

Уроки, нацеленные на развитие логического и алгоритмического мышления школьников:

- не требуют обязательного наличия компьютеров;
- проводятся преимущественно учителем начальной школы, что создаёт предпосылки для переноса освоенных умственных действий на изучение других предметов.

Столь различные характеристики оборудования класса и личности преподавателя позволяют предположить, что для разных школ могут быть оптимальными разные формы сочетания этих двух направлений подготовительного изучения информатики. Именно поэтому в предлагаемой программе рассматриваются два отдельных компонента: технологический и логико-алгоритмический. Предполагается, что оптимальное сочетание этих компонентов и определение их места в учебном процессе будут выполняться методистами и учителями.

3. Описание места учебного курса в учебном плане

Программа рассчитана на 1 час в неделю, 34 часа в год.

4. Личностные, метапредметные и предметные результаты освоения учебного курса

Личностные результаты

К личностным результатам освоения информационных и коммуникационных технологий как инструмента в учёбе и повседневной жизни можно отнести: критическое отношение к информации и избирательность её восприятия;

уважение к информации о частной жизни и информационным результатам других людей;

осмысление мотивов своих действий при выполнении заданий с жизненными ситуациями;

начало профессионального самоопределения, ознакомление с миром профессий, связанных с информационными и коммуникационными технологиями.

Метапредметные результаты

Регулятивные универсальные учебные действия:

планирование последовательности шагов алгоритма для достижения цели;

поиск ошибок в плане действий и внесение в него изменений.

Познавательные универсальные учебные действия:

моделирование – преобразование объекта из чувственной формы в модель, где выделены существенные характеристики объекта (пространственнографическая или знаково-символическая);

анализ объектов с целью выделения признаков (существенных, несущественных);

синтез – составление целого из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;

выбор оснований и критериев для сравнения, сериации, классификации объектов;

подведение под понятие;

установление причинно-следственных связей;

построение логической цепи рассуждений.

Коммуникативные универсальные учебные действия:

аргументирование своей точки зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов; выслушивание собеседника и ведение диалога;

признавание возможности существования различных точек зрения и права каждого иметь свою.

Предметными результатами изучения курса «Информатика» в 3-м классе являются формирование следующих умений:

находить общее в составных частях и действиях у всех предметов из одного класса (группы однородных предметов);

называть общие признаки предметов из одного класса (группы однородных предметов) и значения признаков у разных предметов из этого класса;

понимать построчную запись алгоритмов и запись с помощью блок-схем;

выполнять простые алгоритмы и составлять свои по аналогии;

изображать графы;

выбирать граф, правильно изображающий предложенную ситуацию;

находить на рисунке область пересечения двух множеств и называть элементы из этой области.

5. Содержание учебного курса с тематическим планированием

Алгоритмы 9 часов

Алгоритм как план действий, приводящих к заданной цели. Формы записи алгоритмов: блок-схема, построчная запись. Выполнение алгоритма. Составление алгоритма. Поиск ошибок в алгоритме. Линейные, ветвящиеся, циклические алгоритмы.

Группы (классы) объектов 8 часов

Общие названия и отдельные объекты. Разные объекты с общим названием. Разные общие названия одного отдельного объекта. Состав и действия объектов с одним общим названием. Отличительные признаки. Значения отличительных признаков (атрибутов) у разных объектов в группе. Имена объектов.

Логические рассуждения 10 часов

Высказывания со словами «все», «не все», «никакие». Отношения между множествами (объединение, пересечение, вложенность). Графы и их табличное описание. Пути в графах. Деревья.

Применение моделей (схем) для решения задач 7 часов

Игры. Анализ игры с выигрышной стратегией. Решение задач по аналогии. Решение задач на закономерности. Аналогичные

Примерное тематическое планирование

No	Наименование разделов и тем	Количество часов по авторской программе	Количество часов по рабочей программе
1	Алгоритмы	9	9
2	Группы (классы) объектов	8	8
3	Логические рассуждения	10	10
4	Применение моделей (схем) для решения задач	7	7
5	Итого	34	34

6. Планируемые предметные результаты освоения учебного курса

Предметные результаты

В результате изучения материала ученик научится:

- находить общее в составных частях и действиях у всех предметов из одного класса (группы однородных предметов);
- называть общие признаки предметов из одного класса (группы однородных предметов) и значения признаков у разных предметов из этого класса;
- понимать построчную запись алгоритмов и запись с помощью блок-схем;
- выполнять простые алгоритмы и составлять свои по аналогии;
- изображать графы;
- выбирать граф, правильно изображающий предложенную ситуацию;
- находить на рисунке область пересечения двух множеств и называть элементы из этой области.

7. Календарно – тематическое планирование

	Дата			
№	план	факт	Тема	
1			Введение. Алгоритм как план действий.	
2			Формы записи алгоритмов: блок-схема, построчная запись.	

3	Ветвление в алгоритме.	
4	Цикл в алгоритме.	
5	Алгоритмы с ветвлениями и циклами.	
6	Линейные, ветвящиеся, циклические алгоритмы (обобщение)	
7	Выполнение алгоритма. Составление алгоритма. Поиск ошибок в алгоритме.	
8	Повторение.	
9	Повторение.	
10	Состав и действия объекта.	
11	Группа объектов. Общее название.	
12	Общие свойства объектов группы. Особенные свойства объектов подгруппы.	
13	Единичное имя объекта. Отличительные признаки объектов.	
14	Имена объектов (обобщение).	
15	Имена объектов (обобщение).	
16	Повторение.	
17	Повторение.	
18	Множество. Число элементов множества. Подмножество.	
19	Элементы, не принадлежащие множеству. Пересечение множеств.	
20	Пересечение и объединение множеств.	
21	Истинность высказывания. Отрицание. Истинность высказываний со словом «НЕ».	
22	Истинность высказываний со словами «И», «ИЛИ».	
23	Граф. Вершины и ребра.	
24	Граф с направленными ребрами.	
25	Множество (обобщение).	
26	Повторение.	
27	Повторение.	
28	Аналогия.	
29	Закономерность.	
30	Аналогичная закономерность.	
31	Выигрышная стратегия.	
32	Повторение.	
33	Повторение.	
34	Повторение.	

8. Описание учебно-методического и материально-технического обеспечения образовательной деятельности

А. В. Горячев и др. Информатика в играх и задачах. Учебник-тетрадь. 3 кл. В 2 частях. М.: «Баласс», 2010-2012 г. Информатика в играх и задачах. 3 класс. Методические рекомендации для учителя. — М.: «Баласс», 2005, 240с. Единая коллекция Цифровых Образовательных Ресурсов. URL: http://school-collection.edu.ru/

Перечень средств ИКТ, используемых для реализации настоящей программы:

Аппаратные средства:

- мультимедийные ПК;
- проектор;
- принтер;
- сканер.